Welcome to PRI

To see what kind of research was presented at last January’s Annual Research Forum in oral and poster presentations, click here.

More details about the upcoming Annual Research Forum on Jan. 23, 2016 coming soon!









Founded in 2002, the Pharmaceutical Research Institute (PRI) at Albany College of Pharmacy and Health Sciences is a center for drug discovery and development.

PRI investigators possess expertise in fields that include nanotechnology, medicinal chemistry, molecular biology, and cell biology.

Areas of focus include: hematology/oncology, cardiovascular (dyslipidemia), ophthalmology, vascular diseases, neurology, and inflammation.

As part of its mission, PRI is also engaged in teaching and learning. Pharmacy students, graduate students, and visiting scholars from around the world visit the Institute to conduct research and learn the latest advances across a wide range of therapeutic areas.

Recent Publications

  • Lycopene treatment against loss of bone mass, microarchitecture and strength in relation to regulatory mechanisms in a postmenopausal osteoporosis model

    Lycopene supplementation decreases oxidative stress and exhibits beneficial effects on bone health, but the mechanisms through which it alters bone metabolism in vivo remain unclear. The present study aims to evaluate the effects of lycopene treatment on postmenopausal osteoporosis. Six-month-old female Wistar rats (n=264) were sham-operated (SHAM) or ovariectomized (OVX). The SHAM group received oral vehicle only and the OVX rats were randomized into five groups receiving oral daily lycopene treatment (mg/kg body weight per day): 0 OVX (control), 15 OVX, 30 OVX, and 45 OVX, and one group receiving alendronate (ALN) (2μg/kg body weight per day), for 12weeks. Bone densitometry measurements, bone turnover markers, biomechanical testing, and histomorphometric analysis were conducted. Micro computed tomography was also used to evaluate changes in microarchitecture. Lycopene treatment suppressed the OVX-induced increase in bone turnover, as indicated by changes in biomarkers of bone metabolism: serum osteocalcin (s-OC), serum N-terminal propeptide of type 1 collagen (s-PINP), serum crosslinked carboxyterminal telopeptides (s-CTX-1), and urinary deoxypyridinoline (u-DPD). Significant improvement in OVX-induced loss of bone mass, bone strength, and microarchitectural deterioration was observed in lycopene-treated OVX animals. These effects were observed mainly at sites rich in trabecular bone, with less effect in cortical bone. Lycopene treatment down-regulated osteoclast differentiation concurrent with up-regulating osteoblast together with glutathione peroxidase (GPx) catalase (CAT) and superoxide dismutase (SOD) activities. These findings demonstrate that lycopene treatment in OVX rats primarily suppressed bone turnover to restore bone strength and microarchitecture.

    Read more
  • Extrinsic Targeting Strategies Against Acute Myeloid Leukemic Stem Cells

    Despite advances in the treatment of acute myeloid leukemia (AML), patients still show high relapse and resistance against conventional chemotherapy. This resistance is related to a small clone referred to as Leukemia Stem Cells (LSCs). New targeted strategies are directed against the LSCs’ extrinsic regulators including their microenvironment such as a CXCR4 antagonist that is used to interfere with LSCs’ homing. Targeting LSCs’ surface molecules such as CD33 for selective elimination of LSCs has variable degrees of success that may require further assessments. Trials with CARs cells were effective in eradication of acute lymphoblastic leukemia, and they may have an effective role also in AML. Other strategies are directed against the intrinsic regulators such as self-renewal mechanisms and epigenetic reprogramming of LSCs. This review highlights targeting of the extrinsic regulators of the LSCs and identifies biological differences between them and normal hematopoietic stem cells.

    Read more